OF PHARMACY

COLLABORATIVE ENGAGEMENT IN NOVEL THERAPEUTIC RESEARCH AND ENTERPRISE

PHARMACEUTICAL

SCIENCES

COLLEGE

BACKGROUND

- greater risk of developing life-threatening blood clots.
- thrombotic states causing platelet adhesion and subsequent thrombus formation (Ref. 1).
- \succ Previous findings demonstrated G α 12 interacts with α -SNAP (soluble Nethylmaleimide sensitive factor attachment protein) and is required for α -SNAP dependent vWF secretion (Ref. 2).
- Further studies in the Minshall lab identified a unique 6 amino acid sequence from the G α 12 amino terminal domain essential for α -SNAP binding (SBD6).
- \succ A cell permeable myristoylated SBD6 is a peptide antagonist of $G\alpha 12/\alpha$ -SNAP interaction that blocks both basal and thrombin induced vWF secretion in human endothelial cell cultures and reduces thrombosis in an animal model of sepsis (Figure 1, Ref. 3)

OBJECTIVE

blocking the $G\alpha 12/\alpha$ -SNAP interaction.

- Surface plasmon resonance (SPR) studies show that SBD6 but not SBD6 scrambled peptide bound directly to immobilized GST- α SNAP with K_D = 12.9 μM (Ref 4)
- \succ SBD6 was re-designed to include additional G α 12 sequence, a G6 and PEG linker and biotin tag at the C-terminus (SBD15-G6-PEG-Biotin, SBD-Biotin)
- > SPR with SBD-Biotin showed improved binding affinity for GST- α SNAP (K_D= 0.37 μ M), suitable for use in High Throughput Screen (HTS) assay (Figure 2)
- \succ AlphaLISA was chosen for HTS assay development.
- Chemical energy transfer from donor to acceptor bead is based on proximity through the biological interaction of the peptide and protein. (Figure 3A)
- Presence of inhibitor increases distance from donor to acceptor bead and Alpha signal is decreased (Figure 3B)
- \succ GST- α SNAP and SBD-Biotin titration using streptavidin donor beads paired with glutathione acceptor bead generated a suitable AlphaLISA signal for use in HTS (Figure 3C)
- \succ Unlabeled SBD15 blocked the SBD-Biotin GST- α SNAP, demonstrating acceptable statistical window for HTS and K_{D} in agreement with SPR result (Figure 3D)

Sweta Misra¹, Hyun Lee^{1,3}, Malaika D. Argade¹, Kiira Ratia^{1,2}, Richard D. Minshall^{4*}, Laura J. Bloem^{1*} ¹UICentre, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL ²High-Throughput Screening Core, ³Bio-Physics Core, University of Illinois at Chicago, Chicago, IL ⁴Departments of Anesthesiology and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL

Figure 3, Ref 4

High Throughput Screening Assay to Identify Small Molecule Inhibitors of G α 12 / α -SNAP-dependent vWF Secretion

2021 Accelerator Award (CBC A-018) from the Chicago Biomedical Consortium entitled "Development of Small Molecule Inhibitors of G12/Alpha-SNAP-dependent vWF Secretion".